PARHOZONE.COM

20 Complete

Name:

Test Type

Chapter

MCQs, Short & Long question

Roll No.

Class

Unit

(For information 03335126161 parhozone@gmail.com)

12

20

Subject

Date

Time

Physics

Q. No. 1 Tick the best option				18
1.	The radiations emitted from hydrogen filled discharge tube shows			
	(a) Band spectrum		(b) Line spectrum	
	(c) Continuous spectrum		(d) Absorption spectrum	
2.	According to Bohr's theory of the hydrogen atom, only those orbits around the nucleus are allowed along			
	which angular momentur			40.44
		(b) $n(2\pi/h)$	(c) $2\pi/nh$	(d) $nh/2\pi$
3.		hr's orbit for hydrogen	atom in which electron revolves is given by the relation	
	(a) $rn = nh/4\pi^2 meK$		(b) $rn = n^2h^2/4\pi^2me^2K$	
	(c) $rn = 4\pi^2 me^2 k/n^2 h^2$		(d) $rn = n^2h^2/4\pi me^2 K$	
4.	If the radius of first orbit			
		(b) 0.2120 A^0	(c) 21.200 A^0	(d) 0.142 A^0
5.	The electric P.E of an electron in an orbit at a distance rn from the positive charge			
		(b) $\mathrm{Ke}^2/\mathrm{r}^2$	(c) $\mathrm{Ke}^2/\mathrm{r}^2$	$(d) - Ke^2/rn$
6.				
	known as the			
		(b) Excitation energy	(c) Ionization energy	
7.	, c			
	(a) High energy γ – rays (b) Low energy γ – rays			
			(d) Low energy photon	s or X – rays
8. X – rays exhibit the phenomenon of				
	(a) Interference	(b) Diffraction	(c) Polarization	(d) All of these
9.	The rest of X – ray photo	on is		
	(a) Infinite	(b) $9.1 \times 10^{-31} \text{ K g}$	(c) $1.67 \times 10^{-27} \text{ K g}$	(d) Zero
10.	Life time of excited states (Meta stable) is			
	(a) 10^{-5}	(b) 10^{-3} s	(c) 10^{-8} s	(d) 10^{-2} s
11.	The properties of Laser light are			
	(a) Co–herent	(b) Monochromatic	(c) Plane wave front	(d) All of these
12.	When the electron in hydrogen atom jumps from higher orbit into third orbit, the set of lines emitted is call			
	(a) Balmer series	(b) Bracket series	(c) Paschen series	(d) P fund series
13.	According to Bohr, the a	ingular momentum of a	n electron in the allowed	orbit is given by
		(b) $h/2\pi n$	(c) $nh/2\pi$	(d) $2\pi/\text{nh}$
14.	SI unit of Rydberg consta	ant is	A 7 A	
		(b) m–S	(c) m-1	(d) ms^{-1}
15.	The maximum frequency f_{max} of X – rays produced by the electrons accelerated by potential of V_0 vo			
	expressed by			
		(b) $f_{max} = ve/h$	(c) $f_{max} = hV$	(d) $f_{max} = V/he$
16.	Atomic spectra are	() IIIIA	, max	() max
	•	(b) Line spectrum	(c) Continuous spectru	m (d) Diffused spectrum
	() =	(-)F 34414111	()	(a)

Q. No. 2 Write the short answer of these following questions

 $3 \times 2 = 06$

- Explain why glowing gas gives only certain wavelength of light and why that is capable of absorbing the same 1) wavelength? Give a reason why it is transparent to other wavelengths?
- What is spectroscopy? 2)
- 3) Why do solid give rise to continuous spectrum, while hot gas give rise to line spectrum?

Q. No. 3 Long question

1) Explain de-Broglie hypothesis? How De Broglie proved Bohr atomic model? 05

Calculate longest wave length of radiation for Paschen series? 2)

03

The wavelengths of K – X ray from copper is 1.377×10^{-10} m what is energy difference between the two 3) levels from which this transition results?